Implementasi Algoritma Yolo Untuk Mendeteksi Jalan Berlubang dan Retak

Main Article Content

Laela Sakinah
Emy Haryatmi
Tri Agus Riyadi

Abstract

Roads are transportation facilities intended for traffic as well as public infrastructure that supports the mobility and accessibility of road users. Road damage is commonly found and is often identified manually. Since the invention of Computer Vision in the 1950s, object detection and classification have attracted significant interest in various sectors, including industry and medicine. Since then, many studies have been conducted using various Deep Learning algorithms capable of detecting objects. This research utilizes the YOLOv8 (You Only Look Once) algorithm to detect and classify images. This algorithm works by predicting bounding boxes and class probabilities on the entire image in a single capture. In its application, the data is divided into training, validation, and testing datasets, consisting of images of damaged roads categorized into cracks and potholes. By applying specific configurations in the YOLOv8 algorithm, the resulting output includes the Confusion Matrix calculations. The research involves analyzing results from various data train and validation splits: 70%-30%, 80%-20%, and 90%-10%, with training epochs of 25x, 50x, and 100x, to evaluate how training iterations affect performance outcomes. The results indicate that the highest confidence level is achieved when using a 90%-10% split between training and validation data, reaching 97% confidence, with mAP of 93.2%, F1-Score of 88.7%, Recall of 90.8%, and Precision of 86.7% at the 100th epoch.

Article Details

How to Cite
Sakinah, L., Haryatmi, E., & Riyadi, T. A. (2025). Implementasi Algoritma Yolo Untuk Mendeteksi Jalan Berlubang dan Retak. JITSI : Jurnal Ilmiah Teknologi Sistem Informasi, 6(3). https://doi.org/10.62527/jitsi.6.3.488
Section
Articles
Author Biographies

Laela Sakinah, Universitas Gunadarma

Magister Teknik Elektro

Tri Agus Riyadi, Universitas Gunadarma

Informatika

References

F. Yudaningrum and I. Ikhwanudin, “Identifikasi Jenis Kerusakan Jalan (Studi Kasus Ruas Jalan Kedungmundu-Meteseh),” Teknika, vol. 12, no. 2, pp. 16–23, Oct. 2017, doi: 10.26623/teknika.v12i2.638.
[2] A. Irawan, A. Pratomo, M. Risa, and Heldiansyah, “Perancangan Sistem Deteksi Kerusakan Aspal Jalan Melalui Video Menggunakan Fast Fourier Transform,” in Prosiding SNRT (Seminar Nasional Riset Terapan), Banjarmasin: Politeknik Negeri Banjarmasin, Nov. 2016, pp. A111–A119.
[3] PUPR, “Pemeliharaan Perkerasan Aspal,” https://simantu.pu.go.id/epel/edok/dede9_Modul_3_Pemel._Perkerasan_Aspal.pdf. Accessed: Jun. 19, 2025. [Online]. Available: https://simantu.pu.go.id/epel/edok/dede9_Modul _3_Pemel._Perkerasan_Aspal.pdf
[4] B. Sasmito, B. H. Setiadji, and R. Isnanto, “Deteksi Kerusakan Jalan Menggunakan Pengolahan Citra Deep Learning di Kota Semarang,” TEKNIK, vol. 44, no. 1, pp. 7–14, May 2023, doi: 10.14710/teknik.v44i1.51908.
[5] D. I. Mulyana and I. Wahyudi, “Deteksi Kerusakan Jalan Berdasarkan Citra Digital Menggunakan Convolutional Neural Network (CNN),” Jurnal Indonesia : Manajemen Informatika dan Komunikasi, vol. 6, no. 1, pp. 294–302, Jan. 2025, doi: 10.35870/jimik.v6i1.1192.
[6] A. Wibowo and Y. Yulianto, “Deteksi Keretakan Jalan Aspal Menggunakan Metode Convolutional Neural Network,” Jurnal Teknik Sipil Cendekia (JTSC), vol. 4, no. 2, pp. 581–593, Jul. 2023, doi: 10.51988/jtsc.v4i2.132.
[7] R. H. Pramestya, “Deteksi dan Klasifikasi Kerusakan Jalan Aspal Menggunakan Metode YOLO berbasis Citra Digital,” Thesis, Institut Teknologi Sepuluh November, Surabaya, 2018.
[8] R. F. A. Pratama, “Deteksi Dan Klasifikasi Jalan Rusak Di Bandar Lampung Menggunakan YOLOv8,” Skripsi, Universitas Lampung, Bandar Lampung, 2024.
[9] San Gabriel Vanness Kenrick Erwi and Hafiz Irsyad, “Implementasi Deteksi Objek Pada Jalan Rusak Menggunakan Metode YOLOv8,” Buletin Ilmiah Informatika Teknologi, vol. 3, no. 1, pp. 1–9, Oct. 2024, doi: 10.58369/biit.v3i1.76.
[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las
[11] Hidra Amnur, A. K. Vadreas, and M. Ridwan, “Aplikasi Pendeteksi Kematangan Tanaman Menggunakan Metode Transformasi Ruang Warna HSI (Hue, Saturation, Intensity) dan K-NN (K- Nearest Neighbor)”, jitsi, vol. 5, no. 4, pp. 161 -167, Dec. 2024.
[12] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: IEEE, Jul. 2017, pp. 6517–6525. doi: 10.1109/CVPR.2017.690.
[13] G. Li and D. Zhu, “Research on road defect detection based on improved YOLOv8,” in 2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing: IEEE, Dec. 2023, pp. 143–146. doi: 10.1109/ITAIC58329.2023.10408744.
[14] Y. Xiao, C. Wan, J. Lin, S. Dong, W. Gao, and L. Mei, “Research on Road Damage Detection Based on an Improved YOLOv8 Model,” in 2024 4th International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), Guangzhou, China: IEEE, Nov. 2024, pp. 634–637. doi: 10.1109/CEI63587.2024.10871691.
[15] P. Yanfei and J. Yue, “Road Crack Detection Algorithm Based on Improved YOLOv8,” in 2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China: IEEE, Nov. 2023, pp. 28–32. doi: 10.1109/ICAICA58456.2023.10405428.
[16] A. R. Wasril, M. S. Ghozali, and M. B. Mustafa, “Pembuatan Pendeteksi Obyek Dengan Metode You Only Look Once (YOLO) Untuk Automated Teller Machine (ATM),” Majalah Ilmiah UNIKOM, vol. 17, no. 1, pp. 69–76, Sep. 2019, doi: 10.34010/miu.v17i1.2240.
[17] R. S. Passa, S. Nurmaini, and Di. P. Rini, “YOLOv8 Based on Data Augmentation for MRI Brain Tumor Detection,” Scientific Journal of Informatics, vol. 10, no. 3, pp. 363–370, Aug. 2023.
[18] N. N. Hasibuan, M. Zarlis, and S. Efendi, “Detection and Tracking Different Type of Cars With YOLO model combination and deep sort algorithm based on computer vision of traffic controlling,” Sinkron, vol. 5, no. 2B, pp. 210–221, Dec. 2021, doi: 10.33395/sinkron.v6i1.11231.
[19] Prediksi. 2025. JalanRusak Dataset. Roboflow Universe. Roboflow. Tersedia secara daring di: https://universe.roboflow.com/prediksi/jalanrusak-zofhk-w0e7u [diakses 02 Februari 2025]