Prediksi Harga Laptop Berdasarkan Spesifikasi Menggunakan Algoritma K-Nearest Neighbour

Main Article Content

Adelwin Amnur
Ronal Hadi
Hanriyawan Adnan Mooduto
Rika Idmayanti
Raemon Syaljumairi
Ervan Asri

Abstract

The development of information technology is driving the increasing need for laptops as the primary computing device for various groups. Laptop prices vary greatly, influenced by specifications such as processor type, RAM capacity, storage, and additional features. This research aims to develop a laptop price prediction system based on specifications using the K-Nearest Neighbor (K-NN) algorithm, integrated into a web-based application with a Laravel API backend and MySQL database. The K-NN algorithm works by finding data with the most similar characteristics to determine the price estimate. The laptop price dataset used underwent preprocessing, including converting categorical data to numerical data so it could be processed by the model. Testing was conducted with varying K values of 3, 5, 7, and 9, using the metrics of accuracy, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). The test results showed that K = 5 provided the best performance with an accuracy of 0.89, MAE of 0.15, and RMSE of 0.18. Too small a K value makes the model sensitive, while too large a K value makes the model too general, making K = 5 the optimal point. This model is capable of producing predictions with a low error rate and high accuracy, proving the effectiveness of K-NN in predicting laptop prices based on specifications such as processor brand, processor type, RAM, storage capacity, and screen size. The success of this research also proves that the integration of Flutter, Laravel API, and MySQL can support the development of a responsive, interactive, and beneficial laptop price prediction system for both potential buyers and sellers

Article Details

How to Cite
Amnur, A., Hadi, R., Mooduto, H. A., Idmayanti, R., Syaljumairi, R., & Asri, E. (2025). Prediksi Harga Laptop Berdasarkan Spesifikasi Menggunakan Algoritma K-Nearest Neighbour. JITSI : Jurnal Ilmiah Teknologi Sistem Informasi, 6(3), 267 - 273. https://doi.org/10.62527/jitsi.6.3.498
Section
Articles

References

[1] R. Pratama dan A. Setiawan, "Penerapan Algoritma K-Nearest Neighbor Pada Data Kategorik Untuk Klasifikasi Harga Laptop," Jurnal Sistem Manajemen, vol. 10, no. 2, pp. 45-56, 2023. Tersedia: https://jsm.fmipa.unila.ac.id/index.php/jsm/article/view/39
[2] S. Rahmawati, "Sistem Rekomendasi Pemilihan Laptop Menggunakan Metode Content Based Filtering dan K-Nearest Neighbor," Repository Universitas Muhammadiyah Jember, 2022. Tersedia: https://repository.unmuhjember.ac.id/21755
[3] B. P. Lubis, Hidra Amnur, and Deddy Prayama, “Implementasi Jaringan Syaraf Tiruan untuk Prediksi Cuaca pada PLTA Sumatera Barat”, jitsi, vol. 3, no. 2, pp. 36 - 41, Jun. 2022.
[4] H. A. Putra, "Rancang Bangun Aplikasi Penjualan Berbasis Android dengan Flutter dan Laravel Menggunakan Metode RAD pada Bengkel Mobil XCTOS," Jurnal Media Publikasi, vol. 7, no. 3, pp. 123-130, 2023. Tersedia: https://journal.mediapublikasi.id/index.php/oktal/article/view/3225
[5] B. Suryanto, "Prediksi Harga Penjualan Mobil Bekas dengan Menggunakan Algoritma K- Nearest Neighbors dan Linear Regression," Repository Universitas Multimedia Nusantara,2021. Tersedia: https://kc.umn.ac.id/id/eprint/34053
[6] Hidra Amnur, A. K. Vadreas, and M. Ridwan, “Aplikasi Pendeteksi Kematangan Tanaman Menggunakan Metode Transformasi Ruang Warna HSI (Hue, Saturation, Intensity) dan K-NN (K- Nearest Neighbor)”, jitsi, vol. 5, no. 4, pp. 161 -167, Dec. 2024.
[7] T. Wijaya dan M. Lestari, "Perbandingan Akurasi Prediksi Harga Rumah Algoritma K- Nearest Neighbor dengan Algoritma Extreme Gradient Boost (XGBoost)," Repository Universitas Mercu Buana, 2022. Tersedia: https://repository.mercubuana.ac.id/81505
[8] Rina, “Algoritma K-Nearest Neighbor (KNN): Penjelasan dan Implementasi untuk Klasifikasi Kanker”, medium.com, 2023, Tersedia: https://esairina.medium.com/algoritma-k- nearest-neighbor-knn-penjelasan-dan-implementasi-untuk-klasifikasi-kanker-ff9b7fbe0a4
[9] P. DuBois, MySQL: The Complete Reference. McGraw-Hill Education, 2013.
[10] B. Schwartz, P. Zaitsev, and V. Tkachenko, High Performance MySQL: Optimization, Backups, and Replication. O'Reilly Media, 2012
[11] L. Ullman, MySQL, Second Edition: Visual QuickStart Guide. Peachpit Press, 2011.
[12] E. Redmond and J. Wilson, Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement. Pragmatic Bookshelf, 2012.
[13] MySQL Documentation, "MySQL 8.0 Reference Manual," Oracle Corporation, 2024. [Online]. Available: https://dev.mysql.com/doc/.
[14] F. Khoirudin, “SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SMARTPHONE MENGGUNAKAN METODE K – NEAREST NEIGHBOR (KNN) BERBASIS WEB”, jitsi, vol. 4, no. 2, pp. 82 - 90, Jun. 2023.
[15] F. Khoirudin, “Sistem Pendukung Keputusan Pemilihan Smartphone Menggunakan Metode K – Nearest Neighbor (KNN) Berbasis Web”, jitsi, vol. 4, no. 2, pp. 82 - 90, Jun. 2023.
[16] Fitri Purwaningtias, M. Ariandi, and Suyanto, “Protoype Prediksi Persediaan Menggunakan Metode Weight Moving Average ”, jitsi, vol. 4, no. 4, pp. 147 - 153, Dec. 2023.