Human Activity Recognition Berdasarkan Tangkapan Webcam Menggunakan Metode Convolutional Neural Network (CNN) Dengan Arsitektur MobileNet
Main Article Content
Abstract
Manusia tidak bisa terlepas dari aktivitas sehari-hari yang mana merupakan bagian dari kehidupan manusia. Human activity recognition atau pengenalan aktivitas manusia saat ini merupakan salah satu topik yang sedang banyak diteliti seiring dengan pesatnya kemajuan di bidang teknologi yang berkembang saat ini. Hampir semua bidang terdampak dari pandemi COVID-19 yang memengaruhi aktivitas manusia sehingga menjadi lebih terbatas. Salah satu bidang yang paling terdampak yaitu pendidikan, di mana kampus menerapkan sistem pembelajaran daring, yang membuat dosen lebih sulit untuk mengawasi pembelajaran maupun ujian yang dilakukan secara daring karena tidak dapat mengawasi aktivitas yang dilakukan mahasiswa secara langsung. Penelitian ini bertujuan untuk membuat model yang dapat mengenali aktivitas seseorang saat ujian daring berdasarkan tangkapan webcam dengan memanfaatkan model deep learning dengan metode Convolution Neural Network (CNN) menggunakan arsitektur MobileNetV2. Pengujian hyperparameter dilakukan untuk menghasilkan model optimal yang dilakukan pada batch size sebesar 16, 32, dan 64 serta dense layer sebanyak 1, 3, 5, dan 7. Pengujian tersebut menghasilkan model optimal dengan hyperparameter berupa max epoch sebanyak 20, early stopping dengan patience sebesar 10, learning rate sebesar 0,0001, batch size sebesar 16, dan dense layer sebanyak 5. Model tersebut dievaluasi menggunakan cross validation dan confusion matrix yang berhasil memberikan performa F1-score akhir sebesar 84,52%.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
10.1016/j.matpr.2021.05.490.
Rukajat, A. (2018) Teknik Evaluasi Pembelajaran. Deepublish.
Ehatisham, M. et al. (2020) ‘C2FHAR: Coarse-to-Fine Human Activity Recognition with Behavioral Context Modeling Using Smart Inertial Sensors’, IEEE Access, 8, pp. 7731–7747. doi:
10.1109/ACCESS.2020.2964237.
Nurhikmat, T. (2018) Implementasi Deep Learning Untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (CNN) Pada Citra Wayang Golek. doi: 10.13140/RG.2.2.10880.53768.
Budiman, B. (2021) ‘Pendeteksian Penggunaan Masker Wajah Dengan Metode Convolutional Neural Network’, Jurnal Ilmu Komputer dan Sistem Informasi, Vol.9 No.1.
Ferrari, A. et al. (2021) ‘Trends in Human Activity Recognition using Smartphones’, Journal of Reliable Intelligent Environments. Springer International Publishing, 7(3), pp. 189–213. doi: 10.1007/s40860-021-
00147-0.
Sanhudo, L. et al. (2021) ‘Activity Classification using Accelerometers and Machine Learning for Complex Construction Worker Activities’, Journal of Building Engineering, 35(December). doi:
10.1016/j.jobe.2020.102001.
San-Segundo, R. et al. (2018) ‘Robust Human Activity Recognition Using Smartwatches and Smartphones’, Engineering Applications of Artificial Intelligence, 72(October 2017), pp. 190–202. doi:
10.1016/j.engappai.2018.04.002.
Zhang, S. et al. (2017) ‘A Review on Human Activity Recognition
Using Vision-Based Method’, Journal of Healthcare Engineering,
2017. doi: 10.1155/2017/3090343.
Sutojo, T. (2017) Pengolahan Citra Digital. Penerbit Andi.
Deng, L. and Yu, D. (2013) ‘Deep Learning: Methods and Applications’, Foundations and Trends in Signal Processing, 7(3–4), pp. 197–387. doi: 10.1561/2000000039.
Géron, A. (2019) Hands-on Machine Learning whith Scikit-Learing, Keras and Tensorfow, O’Reilly Media, Inc.
Wei, L. (2017) ‘Human Activity Recognition Using Deep Neural Network With Contextual Information’, VISIGRAPP 2017 - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5(Visigrapp), pp. 34–43. doi: 10.5220/0006099500340043.
Kim, H. (2019) ‘Human Activity Recognition By Using Convolutional Neural Network’, International Journal of Electrical and Computer Engineering, 9(6), pp. 5270–5276. doi: 10.11591/ijece.v9i6.pp5270-5276.
Ignatov, A. (2018) ‘Real-Time Human Activity Recognition from Accelerometer Data using Convolutional Neural Networks’, Applied Soft Computing Journal. Elsevier B.V., 62, pp. 915–922. doi: 10.1016/j.asoc.2017.09.027.
Yeole, C. et al. (2021) ‘Deep Neural Network Approaches for Video Based Human Activity Recognition’, 6(6), pp. 1586–1589.
Patterson, J. and Gibson, A. (2017) Deep Learning: A Practitioner’s Approach, O’Reilly.
Rahmaniar, W. and Hernawan, A. (2021) ‘Real-Time Human Detection Using Deep Learning On Embedded Platforms: A Review’, Journal of Robotics and Control (JRC), 2(6), pp. 462-468Y. doi: 10.18196/jrc.26123.
Nagrath, P. et al. (2021) ‘SSDMNV2: A Real Time DNN-Based Face Mask Detection System Using Single Shot Multibox Detector and MobileNetV2’, Sustainable Cities and Society. Elsevier Ltd, 66(December 2020), p. 102692. doi: 10.1016/j.scs.2020.102692.
Sandler, M. et al. (2018) ‘MobileNetV2: Inverted Residuals and Linear Bottlenecks’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4510–4520.
Burkov, A. (2019) ‘The Hundred-Page Machine Learning Book’, Expert Systems, 5(2), pp. 132–150. doi: 10.1111/j.1468- 0394.1988.tb00341.x.
Zhang, F. et al. (2021) ‘Accelerating Hyperparameter Tuning in Machine Learning for Alzheimer’s Disease With High Performance Computing’, Frontiers in Artificial Intelligence, 4(December), pp. 1–9. doi: 10.3389/frai.2021.798962.
Molokwu, B. C. et al. (2020) Node Classification in complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer International Publishing. doi: 10.1007/978-3-030-50433-5_15.
Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learning. Available at: http://www.deeplearningbook.org/front_matter.pdf.
Müller, A. and Guido, S. (2017) Introduction to Machine Learning with Python. doi: 10.1007/978-3-030-36826-5_10.
Kuhn, M. and Johnson, K. (2013) Applied Predictive Modeling, Applied Predictive Modeling. doi: 10.1007/978-1-4614-6849-3.
Jukes, E. (2017) Encyclopedia of Machine Learning and Data Mining, Encyclopedia of Machine Learning and Data Mining. doi: 10.1007/978-1-4899-7687-1.
Atoum, Y. et al. (2017) ‘Automated Online Exam Proctoring’, IEEE Transactions on Multimedia, 19(7), pp. 1609–1624. doi: 10.1109/TMM.2017.2656064.
Khan, S. et al. (2018) ‘A Guide to Convolutional Neural Networks for Computer Vision’, Synthesis Lectures on Computer Vision, 8(1), pp. 1–207. doi: 10.2200/s00822ed1v01y201712cov015.