Perbandingan Deep Learning YOLOv5 dan YOLOv8 Untuk Deteksi Penyakit Daun Tanaman Tomat

Main Article Content

siti choiriyah
aji supriyanto

Abstract

Agriculture is one of the mainstays of the country's economy, especially the horticulture sub-sector such as fruits and vegetables. Tomato plants are one of the leading commodities. However, the failure of tomato cultivation due to the many types of diseases that exist is still an obstacle and interferes with plant growth, reduces yields, and even causes tomato plant death. This study aims to detect tomato leaf diseases by comparing the performance of the two YOLOv5 and YOLOv8 models. The purpose of comparing models is to determine the level of accuracy and to conclude which version of YOLO provides a better level of accuracy in the hope of helping to determine which method is most appropriate and appropriate to needs. The results showed that both YOLOv5m and YOLOv8m models performed very well in detection. Both models showed high precision, recall, and mAP values. YOLOv8m is better able to detect all objects in the image where the precision value is superior to YOLOv5m. YOLOv8m is superior in precision with a value of 0.95%, a difference of 0.02% with YOLOv5m and mAP50:95 which is 0.92%, a difference of 0.02% with YOLOv5m which means that YOLOv8m is better at identifying objects very precisely and objects of various sizes, but YOLOv8m requires a slightly longer training time than YOLOv5m. YOLOv8m is better able to detect all objects in the image where the precision value is 0.02% superior to YOLOv5m

Article Details

How to Cite
siti choiriyah, & aji supriyanto. (2025). Perbandingan Deep Learning YOLOv5 dan YOLOv8 Untuk Deteksi Penyakit Daun Tanaman Tomat . JITSI : Jurnal Ilmiah Teknologi Sistem Informasi, 6(1), 56 - 65. https://doi.org/10.62527/jitsi.6.1.357
Section
Articles

References

[1] A. P. Pranjaya, F. Rizki, R. Kurniawan, and N. K. Daulay, “Klasifikasi Penyakit Pada Daun Tanaman Padi Berbasis YoloV5 ( You Only Look Once ),” Kaji. Ilm. Inform. dan Komput., vol. 4, no. 6, pp. 3127–3136, 2024.
[2] B. Erwanto and D. H. , Afu Ichsan Pradana, “Pengembangan Sistem Deteksi Penyakit Tanaman Tomat Melalui Citra Daun dengan Metode You Only Look Once (YOLO) Berbasis Android,” G-Tech J. Teknol. Terap., vol. 8, no. 3, pp. 1453–1463, 2024.
[3] A. N. Mendrofa, N. Gea, and K. Gea, “PENGARUH PUPUK ORGANIK AMPAS KELAPA TERHADAP PERTUMBUHAN TANAMAN TOMAT ( Lycopersicum E sculentum Mill ),” Sapta Agrica, vol. 2, no. 1, pp. 36–49, 2023.
[4] BPS, “Latto Lattomat,” 2023.
[5] G. Henry, A. Panjaitan, and F. Simatupang, “Pemodelan Klasifikasi Penyakit Daun Tanaman Tomat dengan Convolutional Neural Network Algorithm,” Kaji. Ilm. Inform. dan Komput., vol. 4, no. 5, pp. 2667–2675, 2024.
[6] D. Setiawan and T. W. E. Suryawijaya, “ALGORITMA RESNET152V2 DALAM MELAKUKAN KLASIFIKASI PENYAKIT PADA DAUN TOMAT,” J. Comput. Sci. Technol., vol. 3, no. 2, pp. 37–42, 2023.
[7] A. M. N. Rohma, “Diagnosa Penyakit Tanaman Tomat pada Citra Daun Menggunakan Metode Convolutional Neural Network (CNN),” JIMU J. Ilm. Multi Disiplin, vol. 02, no. 03, pp. 555–567, 2024.
[8] A. W. Putri, “IMPLEMENTASI ARTIFICIAL NEURAL NETWORK (ANN) BACKPROPAGATION UNTUK KLASIFIKASI JENIS PENYAKIT PADA DAUN TANAMAN TOMAT,” J. Ilm. Mat., vol. 09, no. 02, pp. 344–350, 2021.
[9] J. R. Yasiri, R. Prathivi, and Susanto, “Detection of Plastic Bottle Waste Using YOLO Version 5 Algorithm,” J. dan Penelit. Tek. Inform., vol. 9, no. 1, pp. 20–30, 2025.
[10] E. Naufal and D. Tanadi, “Sistem Pendeteksi Penyakit Kanker Kulit Menggunakan Convolutional Neural Network Arsitektur YOLOv8 Berbasis Website,” Neptunus J. Ilmu Komput. dan Teknol. Inf., vol. 2, no. 3, 2024.
[11] J. Jonathan and D. Hermanto, “Penentuan Epochs Hasil Model Terbaik : Studi Kasus Algoritma YOLOv8,” Digit. Transform. Technol. ( Digit. ), no. September, 2024.
[12] D. Hafidzulrahman, Perbandingan Algoritma You Only Look Once ( YOLO ) versi 5 dan versi 8 sebagai Object Detection pada Pendeteksian Hilal. 2024.
[13] M. I. Mauladany, B. Fatkhurrozi, and R. A. Wibowo, “Deteksi Penyakit Daun Durian dengan Algoritma YOLO (You Only Look Once),” Aviat. Electron. Inf. Technol. Telecommun. Electr. Control., vol. 6, no. 1, p. 73, 2024.
[14] D. G. Manurung et al., “Deteksi Dan Klasifikasi Hama Potato Beetle Pada Tanaman Kentang Menggunakan YOLOV8,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 4, pp. 723–734, 2024.
[15] L. S. Riva and Jayanta, “Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data,” J. Pengemb. IT(JPIT), vol. 8, no. 3, pp. 248–254, 2023.
[16] R. Hesananda, I. A. Noviani, and M. Zulfariansyah, “Implementasi YOLOv5 untuk Deteksi Objek Mesin EDC : Evaluasi dan Analisis,” J. Teknol. Inf. dan Rekayasa Komput., vol. 5, no. 2, pp. 104–110, 2024.
[17] S. Fatimah and T. Ardiansah, “Kombinasi Metode MOORA dan Rank Order Centroid dalam Sistem Pendukung Keputusan Pemilihan Supplier Produk Sepatu,” Kaji. Ilm. Inform. dan Komput., vol. 5, no. 1, pp. 28–38, 2024.
[18] F. H. Arby, I. Husni, and A. Amin, “Implementation of YOLO-v5 for a real-time Social Distancing Detection,” J. Appl. Informatics Comput., vol. 6, no. 1, pp. 1–6, 2022.
[19] E. Casas, L. Ramos, E. Bendek, and F. Rivas-Echeverria, “YOLOv5 vs. YOLOv8: Performance Benchmarking in Wildfire and Smoke Detection Scenarios,” J. Image Graph., vol. 12, no. 2, pp. 127–136, 2024.
[20] I. P. Sary, S. Andromeda, and E. U. Armin, “Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection using Aerial Images,” Ultim. Comput. J. Sist. Komput., vol. 15, no. 1, pp. 8–13, 2023.
[21] G. V. Agustin, M. Ayub, and S. L. Liliawati, “Deteksi dan Klasifikasi Tingkat Keparahan Jerawat : Perbandingan Metode You Only Look Once,” J. Tek. Inform. dan Sist. Inf., vol. 10, pp. 468–481, 2024.