Menentukan Source Terbaik Untuk Menemukan Pelanggan Potensial Menggunakan Algoritma K-Nearest Neighbor

Main Article Content

Irfan Mahendra
Putri Buana

Abstract

Increased competition in futures trading encourages companies involved in the futures trading business to more intensively capture customers' attention through advertising. PT Global Kapital Investama Berjangka or GK Invest currently uses advertising on several sources such as Facebook, Google, Instagram, and several other online advertising media as one of its marketing strategies. To avoid inefficiencies in advertising, an instrument that can assist companies in determining the most effective advertising media is needed. The K-Nearest Neighbor (KNN) algorithm is the most popular algorithm used for classifying objects. This algorithm is seen to be used to determine the best source for finding potential customers related to advertising. Based on the research results obtained the calculation of the accuracy of the K-Nearest Neighbor using the RapidMiner Application with the Cross Validation method with a K = 1 parameter of 99%.

Article Details

Section
Articles

References

[1] Indonesia, Perubahan Atas Undang Undang Nomor 32 Tahun 1997 Tentang Perdagangan Berjangka Komoditi. Undang Undang No 10 Tahun 2011 Lembaran Negara No 79 Tahun 2011 TLN No 5232, 2011.
[2] S. R. D. Setiawan, “Investor Perdagangan Berjangka Komoditi Terus Meningkat,” 2019. [Online]. Available: https://money.kompas.com/read/2019/12/06/114200526/investor-perdagangan-berjangka-komoditi-terus-meningkat?page=all.
[3] I. N. Sari, “Volume transaksi kontrak berjangka tumbuh 26,5% hingga kuartal III 2019,” 2019. [Online]. Available: https://amp.kontan.co.id/news/volume-transaksi-kontrak-berjangka-tumbuh-265-hingga-kuartal-iii-2019.
[4] Bappebti, “Pialang Berjangka,” 2019. [Online]. Available: http://bappebti.go.id/pialang_berjangka.
[5] A. Lukitaningsih, “Iklan yang Efektif Sebagai Strategi Komunikasi Pemasara Ambar Lukitaningsih Fakultas Ekonomi Universitas Sarjanawiyata Tamansiswa Yogyakarta,” J. Ekon. dan Kewirausahaan, vol. 13, no. 2, pp. 116–129, 2013.
[6] Kaharudin, M. G. Pradana, and Kusrini, “Prediksi Customer Churn Perusahaan Telekomunikasi Menggunakan Naive Bayes Dan K-Nearest Neighbor,” J. Inf. Interaktif, vol. 4, no. 3, pp. 165–171, 2019.
[7] G. Andri, “Program Studi Manajemen Fakultas Ekonomi Universitas Tamansiswa Padang,” Strateg. Pemasar. dan Ef. Periklanan Dengan Menggunakan Metod. Komunikasi, Empati, Persuas. dan Dampak Pada Perusah. PT Bhineka Lestari Ltd, vol. 3, no. 2, pp. 30–60, 2012.
[8] F. N. Azmi and M. Sarma, “Pengaruh Iklan Televisi terhadap Pengambilan Keputusan Pembelian Konsumen Es Krim Magnum,” J. Manaj. dan Organ., vol. 8, no. 2, p. 119, 2018.
[9] GKInvest, “Tentang Kami,” 2019. [Online]. Available: https://www.gkinvest.co.id/AboutUs.
[10] W. Yustanti, “Algoritma K-Nearest Neighbour untuk Memprediksi Harga Jual Tanah,” J. Mat. Stat. dan komputasi, vol. 9, no. 1, pp. 57–68, 2012.
[11] T. C. Pratama, “Penerapan Metode K-Nearest Neighbour Dalam Menentukan Kelayakan Calon Nasabah Yang Layak Untuk Kredit Mobil ( Studi Kasus : Pt . Astra International , Tbk-Toyota ),” JURIKOM (Jurnal Ris. Komputer), vol. 5, no. 4, pp. 402–408, 2018.
[12] R. Hadi, D. Saryanti, and P. Suwirmayanti, “Pengklasifikasian Pelanggan Dengan Metode KNN (Studi Kasus : Dalung Rent Toys Bali),” Pros. SNST ke-10 Tahun 2019, vol. 10, pp. 48–52, 2019.
[13] Mustakim and G. O. F, “Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa,” J. Sains, Teknol. dan Ind., vol. 13, no. 2, pp. 195–202, 2016.
[14] N. Krisandi, B. Prihandono, and Helmi, “Algoritma K - Nearest Neighbor Dalam Klasifikasi Data Hasil Produksi Kelapa Sawit Pada PT. MINAMAS Kecamatan Parindu,” Bul. Ilm. Math.Stat.dan Ter., vol. 02, no. 1, pp. 33–38, 2013.
[15] W. T. Panjaitan, “Penerapan Algoritma Knn Pada Prediksi Produksi,” Semin. Nas. Teknol. Inf. dan Multimed. 2018, pp. 61–66, 2018.
[16] R. R. Sani, J. Zeniarja, and A. Luthfiarta, “Penerapan Algoritma K-Nearest Neighbor pada Information Retrieval dalam Penentuan Topik Referensi Tugas Akhir,” J. Appl. Intell. Syst., vol. 1, no. 2, pp. 123–133, 2016.
[17] S. Sumarlin, “Implementasi Algoritma K-Nearest Neighbor Sebagai Pendukung Keputusan Klasifikasi Penerima Beasiswa PPA dan BBM,” J. Sist. Inf. Bisnis, vol. 5, no. 1, pp. 52–62, 2015.
[18] A. Panoto, Y. R. W. Utami, and W. L. YS, “Penerapan Algoritma K-Nearest Neighbors untuk prediksi kelulusan Mahasiswa pada STMIK Sinar Nusantara Surakarta,” J. TIKomSiN, pp. 27–31, 2017.
[19] R. R. Putra and C. Wadisman, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Means,” J. Inf. Technol. Comput. Sci., vol. 1, no. 1, pp. 72–77, 2018.
[20] N. Hadianto, H. B. Novitasari, and A. Rahmawati, “Klasifikasi Peminjaman Nasabah Bank Mengunakan Metode Neural Network,” J. PILAR Nusa Mandiri, vol. 15, no. 2, pp. 163–170, 2019.
[21] V. Alfani, “Data Mining Untuk Klasifikasi Pinjaman Kredit Pensiunan Menggunakan Algoritma K-Nearest Neighbor,” J. Pelita Inform., vol. 18, no. April, pp. 281–286, 2019.