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This paper presents a new method for fault classification and detection in 

transmission lines using the Chimp Optimization Algorithm (ChOA) integrated with 
Support Vector Machine (SVM). The adding complexity of modern power schemes 
demands more accurate and efficient methods for identifying and classifying faults 
to ensure system reliability and minimize downtime. The proposed method leverages 
the strengths of ChOA, an optimization procedure motivated by the social actions of 
chimpanzees, to optimize the parameters of the SVM, enhancing its ability to 
classify different types of faults accurately. By combining ChOA with SVM, the 
method not only improves fault classification accuracy but also reduces 

computational time, making it suitable for real-time applications. Extensive 
simulations were conducted using various fault scenarios and configurations to 
justify the execution of the ChOA-SVM model. The outcomes demonstrate that the 
suggested approach outperforms traditional fault detection procedures in precision, 
speed, and adaptability to different transmission line conditions. This study aids to 
the field of power system protection by giving a robust and efficient solution for 
fault classification and detection, with potential applications in enhancing the 
resilience and reliability of transmission networks. 
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1. INTRODUCTION 

The reliability of power transmission systems is crucial in continuing the stability and efficacy of the grid. As 

power generating schemes grow in complexity and scale, the need for advanced techniques to precisely identify 

and categorize faults in transmission lines has become more pressing. Traditional fault detection techniques often 

struggle to keep pace with the demands of modern grids, particularly in the face of varying environmental 
conditions and the increasing incorporation of non-conventional resources. To address these challenges, 

optimization algorithms have emerged as powerful tools for enhancing the performance of fault detection systems. 

Among these, the ChOA has gained attention due to its unique approach inspired by the social behavior of 

chimpanzees, offering promising results in various optimization problems. 
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In this study, we explore the application of ChOA in conjunction with SVM for FDC in transmission lines. 

SVM, a well-established machine learning technique, is known for its robustness in classification tasks. However, 

its performance is highly dependent on the selection of parameters, which can significantly impact its ability to 

correctly identify faults. By employing ChOA to optimize these parameters, it aims to improve the precision and 

efficiency of the SVM-based fault detection structure. The proposed ChOA-SVM model is tested across a range 

of fault scenarios to evaluate its effectiveness, with results indicating superior performance compared to 

conventional methods. This research not only expands the discipline of power system protection but also 

demonstrates the ability of bio-inspired algorithms in solving complex engineering problems. 
This literature review examines various approaches for FDC, and location in power transmission lines, 

highlighting both traditional and modern techniques. One study presents a technique using ANN to classify and 

detect faults, achieving high accuracy through features extracted from fault signals, which demonstrates the 

effectiveness of ANN in real-time applications [1]. Another review categorizes fault detection methods, 

emphasizing the significance of accurate diagnosis for system reliability but notes the lack of in-depth analysis 

and empirical support for the discussed methodologies [2]. Additionally, an approach utilizing ANN and other 

computational techniques for comprehensive FDC is presented, showing the potential for improved reliability in 

power generating structures, though the complexity of these algorithms may limit real-time implementation [3]. 

Further research explores the use of SVM techniques for fault classification, which proves effective in handling 

non-linear data but may face limitations in scenarios where the data is not linearly separable [4]. A deep-learning-

built approach using Hilbert-Huang Transform (HHT) and CNN is also discussed, offering significant 
improvements in classification accuracy. However, the computational complexity of deep learning models could 

challenge their application in real-time settings, and the effectiveness of these methods across diverse operational 

conditions requires further validation [5]. 

This literature review explores various advanced techniques for FDC and location in power systems, 

specifically in grid-tied photovoltaic (PV) systems and transmission lines. A reduced kernel random forest method 

has been proposed for spotting and organizing faults in grid-tied PV systems, showing superior accuracy and 

computational efficiency compared to traditional methods. However, the reliance on simulated data may limit the 

generalizability of the findings [6]. In transmission lines connected to inverter-based generators, machine learning 

procedures, including SVM and decision trees, have been effectively applied for FDC, with a focus on the 

importance of feature selection [7]. Additionally, a signal processing approach using wavelet transforms and 

Fourier analysis has demonstrated high accuracy in fault identification for three-phase transmission lines, although 

the method may face limitations in universal applicability and noise resistance [8].Further advancements in fault 
detection include the application of LSTM networks, which have shown promise in learning temporal patterns in 

fault data, leading to improved classification accuracy. However, the complexity and data requirements of LSTM 

models pose challenges for real-time implementation [9]. ANNs have also been utilized for FDC, particularly in 

transmission lines, where they have proven effective in handling non-linear relationships. Despite their accuracy, 

the ANN models require extensive training data and careful tuning of architecture and hyperparameters, which 

may complicate their deployment in practical scenarios [10]. 

This review highlights several advanced techniques for FDC, and localization in power transmission lines and 

power electronics systems. A novel approach combining Particle Swarm Optimization (PSO) with a pattern 

recognition neural network demonstrates improved classification accuracy and reduced computational time, 

although it may face challenges in generalizing to all real-world scenarios due to dataset limitations and the 

complexity of parameter tuning [11]. Another method employs functional analysis and computational intelligence 
for fault detection, showcasing high accuracy and reliability. However, the computational complexity of 

functional analysis may hinder its real-time application, and the study may not fully consider the impact of external 

factors like environmental conditions [12]. Optimized machine learning procedures have also been applied for 

fault detection and localization, significantly enhancing accuracy, though the approach may require extensive 

computational resources, limiting its practicality in real-time scenarios [13].Further research explores the use of 

Support Vector Machines (SVM) for FDC and section identification in series-compensated transmission lines, 

demonstrating high precision but with potential limitations in adaptability to different fault conditions and system 

noise [14]. Optimization techniques have also been applied to fault detection in a 3-phase single-inverter circuit, 

improving reliability and detection speed. However, the focus on a specific circuit configuration may limit the 

pertinence of the findings to other power systems, and the optimization techniques used may require extensive 

tuning, complicating their implementation [15]. Together, these studies underscore the potential of machine 

learning and optimization techniques in enhancing fault management in power systems, while also highlighting 
the challenges of generalization, computational complexity, and practical implementation. 

The reviewed studies explore a range of advanced methods for FDC and localization in transmission lines and 

HVDC systems, emphasizing the integration of optimization algorithms with machine learning techniques. A 

notable approach combines wavelet transforms with Support Vector Machines (SVM) enhanced by the Harris 

Hawks optimization algorithm, improving the accuracy of fault identification and location in transmission lines, 

though it may be constrained by its computational complexity and limited applicability to specific transmission 
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line configurations [16]. Another study leverages the GWO algorithm with ANN for HVDC systems, 

demonstrating significant improvements in fault detection accuracy. However, the method's robustness could be 

impacted by environmental conditions, and the reliance on ANN may reduce interpretability [17]. 

Further research highlights the impact of different swarm optimization algorithms on FDC in VSC-HVDC 

systems, underscoring the importance of selecting the appropriate algorithm for specific scenarios, although the 

study may not encompass all possible algorithms [18]. A heterogeneous multi-machine learning approach is also 

proposed for fault detection in HVDC transmission lines, showcasing superior accuracy but presenting challenges 

in implementation due to its complexity [19]. Additionally, a review paper provides a comprehensive overview 
of AI-based techniques for fault management in transmission lines, though it may lack original experimental data 

and may not cover all emerging AI methodologies [20]. These studies collectively underscore the potential of 

integrating optimization algorithms with machine learning to enhance fault management in electrical systems 

while also highlighting the challenges of computational complexity, generalizability, and interpretability. 

Recent studies provide insights into the use of SVM and other machine learning procedures for FDC and 

location in transmission structures. One study focuses on using SVM for classifying and locating faults in long 

transmission lines, highlighting its effectiveness in differentiating fault types based on voltage and current 

measurements, though it lacks comparison with other machine learning methods and may not account for 

environmental conditions [21]. Another research presents an SVM-based scheme tailored for six-phase 

transmission lines, achieving high accuracy in fault section identification and classification, although its 

applicability to conventional three-phase systems is limited [22]. A two-step approach combining fault 
classification with subsequent fault location using voltage amplitudes further enhances accuracy but may fall short 

under complex fault conditions and has yet to be fully evaluated for real-time applications [23]. 

A broader survey examines the usage of various machine learning approaches in FDC, emphasizing the 

advantages of these techniques over traditional methods, such as improved accuracy and speed. However, the 

survey may not delve deeply into individual studies, and some methods may quickly become outdated due to the 

fast pace of advancements in machine learning [24]. Additionally, the introduction of the Chimp Optimization 

Algorithm (COA) offers a novel approach to solving optimization problems, though its specific applicability to 

fault detection in transmission lines remains unexplored, and its performance may vary depending on the problem 

domain [25]. These studies collectively underscore the potential and challenges of employing advanced machine 

learning and optimization techniques in power system fault management, emphasizing the need for further 

research and practical evaluation. 

1. Problem Statement 

The reliability and stability of power transmission systems are critical for the efficient operation of modern 

electrical grids. As power systems become more complex and integrate diverse energy sources, traditional fault 

detection techniques struggle to meet the demands posed by evolving grid conditions. Existing methods often face 

limitations in accuracy, efficiency, and adaptability, particularly under varying environmental conditions and the 

incorporation of non-conventional resources. The increasing complexity of power systems necessitates advanced 

approaches for FDC. Optimization algorithms, such as the Chimp Optimization Algorithm (ChOA), which are 

inspired by natural behaviors, have shown promise in enhancing performance across various applications. 

However, their specific application in conjunction with machine learning techniques for power system fault 
detection remains underexplored. This research aims to address these challenges by employing ChOA to optimize 

the parameters of Support Vector Machine (SVM) models for fault detection in transmission lines, with the goal 

of improving accuracy and efficiency in fault classification. 

2. Research Objectives 

1. To explore the effectiveness of the ChOA in optimizing SVM parameters for fault detection and 

classification in power transmission lines. 

2. To develop a ChOA-SVM model and evaluate its performance across various fault scenarios, comparing 

its effectiveness to traditional fault detection methods. 

3. To analyze the impact of ChOA-optimized SVM parameters on the accuracy and efficiency of fault 
classification, particularly in the context of modern power systems integrating renewable energy sources. 

4. To review and synthesize existing techniques in fault detection, classification, and location, highlighting 

the advantages and limitations of integrating optimization algorithms with machine learning methods. 

2. RESEARCH METHODOLOGY 

Increased power network reliability and reduced transmission line restoration costs are made feasible by FDC. 

The main cause of the end users' inability to access energy is the malfunctioning transmission line. Numerous 

transmission line defects, including LL, LG, LLG, and LLL, lead to problems in the electricity system. The 
accurate FDC develops a method to ensure dependable transmission line operation. Fault identification and 
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classification are required to identify the types of faults that have arisen and their locations throughout the entire 

network, even though human involvement is still needed for the recovery of the problematic phases. 

This is significant since an accurate and timely FDC raises the probability that troublesome phases will be 

swiftly eliminated from the network. Eliminating the problematic phases raises the system's stability, improves 

the power network's transient stability, and improves the quality of power supplied. This study recommends a 

FDC strategy for transmission line defects. The suggested method efficiently classifies faults and locates defects 

using an SVM classifier. The ChOA algorithm is used to modify the SVM classifier's parameters, improving the 

classification accuracy.  

 
(a) 

 
(b) 

 
(c) 

 

 

 
 

The system is built as a single transmission  model to recognize the type of trouble and its location. 
Transmission lines, loads, buses, and generators make up the transmission line system model. Thus, with the 

corresponding L-L fault, L-G fault, and fault on a single transmission line with one generator on every side, the 

system example for the transmission lines is displayed in Fig. 1. 

1. Overall Working Principle of The Proposed Method 

The pre-processing unit, fault classifier, and fault locator make up the suggested fault categorization and 

location identification system. The pre-processing unit receives the current and voltage signals as input, and then 

uses the SVM classifier to perform the classification process. The recommended ChOA method is used to 

precisely change the weights of the SVM classifier. The location and distance of the problem are established after 

it has been identified and described.  

2. Pre-Processing Step 

Before the voltage and current data are fed into the neural network, the observed values are processed depending 

on the momentary voltage and current in each of the phase’s R, Y, and B. Scaling the post-fault to the fundamental 

voltage and current of the pre-fault yields the input-output voltages and current. Additionally, earth-related faults 

can be found using the zero-sequence component of current. 

3. Fault Classification Using SVM Classifier 

SVM has demonstrated its improved ability in numerous real-world applications, particularly in the resolution 

of classification issues. SVM's primary goal is to enhance hyper-plane tuning, and expanding the classification's 

bounds is the foundational design method. Fig. 2 shows the architecture of the SVM classifier. In this study, SVM 

used the suggested ChOA to create an ideal hyperplane that divides the classes by the greatest margin in order to 

construct its conclusions.  

Six groups of transmission line faults are distinguished: A-G, B-G, C-G, A-B, B-C, and C-A. Many effective 
methods are used to lower SVM's time and space complexity. In this work, the SVM classifier is exercised using 

the recommended ChOA technique in order to determine which SVM classifier kernel is optimal. 

In case of optimal hyperplane, ,0. =+ ca GE , and  Ec , the function of the decision to categorize 

the point a that is unknown is stated as, 
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FIG 1. System model (a) Line-Line Fault, (b) Line-Ground 

Fault and (c) single transmission line (one generator on 

each side) 
FIG 2. Architecture of support vector machine classifier 
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where, 
pG indicates the count of the support vector, sa is the support vector; Ws ,...,1= , s represents the 

Lagrange multiplier and si is the class of a . The input space makes it very challenging to identify the critical 

hyperplane for real-world applications. To resolve this problem, the input space is mapped onto a high-

dimensional feature space, from which the ideal hyperplane is derived. 

When a mapping from  to GE to a feature space is present, consider ( )am = as the feature space vector. 

The suggested approach in the feature space A , which is represented as, optimizes the kernel M as follows: 
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The decision function is presented as follows in the final stage,  
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where the width dimension, which also denotes the RBF, indicates the polynomial order. However, because 

each node in the hidden layer assesses the kernel value and contributes to misclassification, the RBF-based kernel 

function raises computational cost.To prevent such categorization difficulties, the kernel is ideally adjusted using 

the suggested ChOA technique. After categorizing the defect into A-G, B-G, C-G, A-B, B-C, or C-A categories, 

the SVM locates the problem. Thus, the SVM accurately ascertains the location of the fault in the transmission 

system by employing considerations or input data like 5, 10, 15 & 20 km respectively. 

3. CHIMP OPTIMIZATION ALGORITHM 

1. Mathematical Model and Algorithm  

The mathematical models of pursuing, driving, stopping, attacking, and separate teams are shown in this 

section. The matching ChOA algorithm is then provided.  

Driving and Chasing Prey  

The prey is hunted during the phases of exploration and exploitation, as was previously indicated. Eqs. (6) and 

(7) are suggested to model driving and rushing the prey analytically.  

 𝑑 = |𝑐. 𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑚. 𝑋𝑐ℎ𝑖𝑚𝑝(𝑡)|    (6) 

 𝑋𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = 𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑎. 𝑑   (7) 

Prey x is the vector of the prey's position, chimp x is the vector of a chimpanzee's position, and t indicates the 
number of the current repetition. The coefficient vectors are a, m, and c. The vectors a, m, and c are decided by 

Eqs. (8), (9) and (10), in that order. 

 𝑎 = 2𝑓𝑟1 − 𝑓   (8) 

 𝑐 = 2𝑟2    (9)   

 𝑚 = 𝐶ℎ𝑎𝑜𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒   (10) 

This section discusses the iterative reduction from 2.5 to 0 in a non-linear manner during both exploration and 

exploitation phases, influenced by random vectors r1 and r2 in the interval [0,1], and a chaotic vector m, which 

models the hunting behavior of chimpanzees. In traditional population-based optimization, all particles use a 

single strategy for both local and global searches, treating the population as one group. However, by utilizing 

multiple independent groups, each with its own strategy, optimization can achieve both directed and random 

search results. The ChOA algorithm is mathematically represented with these independent groups, which update 

using functions that decrease with each iteration. Two variants, ChOA1 and ChOA2, are identified as the most 

effective in benchmark optimization procedures. To comprehend how independent groups function in ChOA, the 
following points might be considered:  
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- Independent groups in ChOA use different update strategies, allowing chimpanzees to explore the search 

space more effectively and balance local and global search through dynamic adjustments. 

- The flexibility of ChOA with non-linear methods, such as logarithmic and exponential functions, makes it 

well-suited for tackling complex optimization problems. 

To understand Equations (6) and (7), a two-dimensional representation shows how a chimpanzee at position 

(x,y) can adjust its position to align with its prey. By varying the vectors a and c, multiple positions can be targeted 

based on the chimp's current location. Arbitrary vectors r1 and r2 allow chimps to move in any direction around 

the prey, and this concept extends to an n-dimensional search space. The chimps employ a chaotic strategy to 

approach their prey, with a mathematical explanation provided in the following section. 

Attacking Method (Exploitation Phase)  

Two techniques model chimpanzee aggression mathematically: chimps locate and encircle their target through 

driving, blocking, and chasing behaviors, with attacking chimps primarily carrying out the hunt. While other roles 

like barriers, chasers, and drivers sometimes join in, the optimal prey location isn't clear in an abstract search 

space. To mimic this behavior, it's assumed that the first attacker, driver, obstacle, and chaser have better 

information about the prey's location. The top four results are maintained, and the other chimps adjust their 

positions accordingly, as expressed in Equations (11), (12), and (13). 

 𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = |𝑐1𝑋𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝑚1𝑋1|, 𝑑𝐵𝑎𝑟𝑖𝑒𝑟 = |𝑐2𝑋𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝑚22| 

 𝑑𝐶ℎ𝑎𝑠𝑒𝑟 = |𝑐3𝑋𝐶ℎ𝑎𝑠𝑒𝑟 − 𝑚3𝑋1|, 𝑑𝐷𝑟𝑖𝑣𝑒 = |𝑐4𝑋𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝑚42| 11  

 𝑋1 = 𝑋𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝑎1(𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟), 𝑋2 = 𝑋𝐵𝑎𝑟𝑟𝑖𝑒𝑟 − 𝑎2(𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟),  

 𝑋3 = 𝑋𝐶ℎ𝑎𝑠𝑒𝑟 − 𝑎3(𝑑𝐶ℎ𝑎𝑠𝑒𝑟), 𝑋4 = 𝑋𝐷𝑟𝑖𝑣𝑒𝑟 − 𝑎4(𝑑𝐷𝑟𝑖𝑣𝑒𝑟), 12 

 𝑋(𝑡 + 1) =
𝑋1+𝑋2+𝑋3+𝑋4

4
   13   

The attacker, obstacle, chaser, and driver chimps form a circle around the prey's estimated location. Other 

chimps then randomly update their positions based on the estimates of these four best groups. 

Prey Attacking (Utilization)  

In the final stage of the hunt, chimps attack their target, stopping when the prey ceases to move. To model this, 

the value of  f  is reduced from 2.5 to 0 during iterations, with  a  ranging within [-2f, 2f]. When  a is between [-

1, 1], the chimp's next position can be anywhere between its current location and the prey's position. ChOA adjusts 

positions based on the attacker, obstacle, chaser, and driving chimps, but additional mechanisms are needed to 

avoid getting stuck in local minima and to enhance exploration. 

Searching For Pray (Exploration)  

The ChOA uses various strategies to simulate chimp behavior during exploration. Inspired by the Grey Wolf 

Optimizer (GWO), it employs vectors to simulate divergence, causing search agents to move away from prey. 

The variable c within the interval [0,2] adjusts the impact of the prey's position on distance calculations, enhancing 
randomness and reducing the risk of local minima. Additionally, c  represents natural obstacles that affect 

chimpanzee movement, assigning random weights to prey based on the chimp's position, either facilitating or 

hindering the hunt. This approach helps maintain global exploration throughout the optimization process. 

Social Incentive  

In the final stage of the ChOA, chimpanzees abandon the hunt, experiencing social desire and a frantic effort 

to gather resources. This stage introduces chaos, which addresses the issues of slow convergence and local optima 

entrapment in high-dimensional problems. Chaotic maps, exhibiting both random and deterministic behavior, 

enhance ChOA's performance. A central value of 0.7 is used for each map, and during optimization, there's a 50% 

chance of selecting either the chaotic model or the regular update mechanism to adjust the chimps' positions. This 
is mathematically represented in Eq. (14). 

 𝑋𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = {
𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑎𝑑 𝑖𝑓 𝜇 < 0.5

𝐶ℎ𝑜𝑎𝑡𝑖𝑐 𝑉𝑎𝑙𝑢𝑒  𝑖𝑓  𝜇 > 0.5
   (14) 

Where is a random number in [0,1].  

The ChOA search begins with creating a random set of chimps, representing potential solutions, which are 
divided into four groups: attacker, barrier, chaser, and driver. Each group updates its coefficients during the 

iteration, estimating the positions of prey. Solutions adjust their distance from the target, with adaptive 

adjustments to the c and m vectors enhancing convergence and avoiding local optima. The f value decreases from 

2.5 to zero to refine prey exploitation. Solutions diverge if inequality (1 > a), otherwise they converge near the 

prey. 
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2. Step-By-Step Algorithm For Fault Classification And Detection in Transmission Lines Using Chimp 

Optimization Algorithm (ChoA) and Support Vector Machine (SVM) 

Step 1: Data Collection 

• Gather fault data from transmission lines, including various fault types and conditions. This data will be 

used to train and test the SVM model. 

Step 2: Data Preprocessing 

• Normalize and preprocess the collected data to ensure consistency and improve the accuracy of the SVM 

model. 

Step 3: Initialize Chimp Optimization Algorithm (ChOA) 

• Define the initial population of chimpanzees, where each chimpanzee represents a potential solution (i.e., 

a set of SVM parameters). 

• Set the algorithm's parameters, including the number of iterations, population size, and convergence 

criteria. 

Step 4: Evaluate Fitness of Each Chimpanzee 

• For each chimpanzee in the population, evaluate its fitness by training the SVM using the parameters 

represented by that chimpanzee. 

• Calculate the classification accuracy of the SVM on the validation data. This accuracy serves as the fitness 

score. 

Step 5: Update Chimpanzee Positions 

• Update the positions of the chimpanzees based on their social hierarchy and cooperative hunting strategies. 

This involves adjusting the SVM parameters to explore new potential solutions. 

• Use the best-performing chimpanzees to guide the search for optimal parameters. 

Step 6: Check for Convergence 

• Check if the algorithm has met the convergence criteria (e.g., reaching a maximum number of iterations or 

achieving a predefined accuracy level). 

• If convergence is not met, return to Step 4 and continue the optimization process. 

Step 7: Finalize the Optimal SVM Parameters 

• Once the algorithm converges, select the chimpanzee with the highest fitness score. The parameters 

associated with this chimpanzee are considered the optimal SVM parameters. 

Step 8: Train the SVM with Optimal Parameters 

• Use the optimal SVM parameters obtained from ChOA to train the final SVM model on the complete 

training dataset. 

Step 9: Fault Classification and Detection 

• Deploy the trained SVM model to organize and detect faults in real-time transmission line data. 

• Monitor the system to ensure accurate and timely fault detection. 

Step 10: Performance Evaluation 

• Estimate the performance of the ChOA-optimized SVM model using various metrics such as classification 

accuracy, computational time, and adaptability to different fault conditions. 

• Compare the results with traditional fault detection methods to demonstrate the effectiveness of the 

proposed approach. 

Step 11: Deployment and Monitoring 

• Implement the optimized SVM model in the power system protection framework for real-time fault 

classification and detection. 

• Continuously monitor the performance and update the model as necessary to adapt to changing 

transmission line conditions. 

4. RESULTS AND DISCUSSION 

1. Simulation Procedure 

MATLAB/Simulink was used to test the ChOA-based SVM model for fault classification and localization, 

yielding relevant results. Three transmission line scenarios were analyzed: (i) a model with two loads and two 

generators symmetrically positioned, (ii) a model with one load and one generator on each side, and (iii) a model 

with two generators symmetrically positioned. Artificial data based on fault type and distance were collected. The 
accuracy and classification rates of the ChOA-based SVM model were then compared with conventional models 

like GWO, DA, NN, LSTM, and SSA algorithms, with model parameters detailed in Tables 1. 
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Parameters Value 

Source feeder 

Phase-phase voltage 11e3vrms 

Frequency 50 hz 

3-phase SC level at base 

voltage 

30e6 (VA) 

Three phase RLC load 

 Phase-to-phase voltage 1000 Vrms 

frequency 50 hz 

Active power  10e3W 

Inductive reactive power 100 

Capacitive reactive  0 

Three phase transformer 

 Power and frequency [1e6(VA),  50(Hz)] 

winding 1 parameters [11e3(vrms),0.0020(pu), 

08(pu)] 

wing 2 parameters [11e3(vrms),0.0020(pu), 

08(pu)] 

magnetization resistance 500(p.u) 

magnetization inductance 500(p.u) 

The comparative analysis presented in Table 2 

evaluates the accuracy of different algorithms, DA, 

SSA, NN, LSTM, and ChOA—in determining fault 

distance across three scenarios. In Scenario 1, ChOA 

consistently outperforms the other algorithms, 

achieving the highest accuracy across all distances, 

with values ranging from 0.95083 to 0.99325. SSA 

also demonstrates strong performance, particularly 
over greater distances, with an accuracy of up to 

0.985 at 20 km. In contrast, NN and LSTM 

algorithms show lower accuracy, especially in 

shorter distances, with NN recording as low as 

0.7874 at 5 km and LSTM achieving 0.7986 at the 

same distance. In Scenario 2, ChOA continues to 

show superior performance, maintaining the highest 

accuracy at nearly every distance, peaking at 

0.96542 at 20 km. GWO and DA also perform well, 

especially at higher distances, with GWO achieving 

an accuracy of 0.95542 at 20 km.  
 

 

 

In Scenario 3, although SSA demonstrates the highest accuracy at 20 km with a value of 0.9945, ChOA and 

GWO still perform commendably, both recording accuracies of 0.96 at the same distance. Across all scenarios, 

NN and LSTM consistently lag behind the other algorithms, particularly at longer distances, indicating a potential 

area for improvement in these models 

 

 

 

 

 

 

                              

 

 

 
(a) 

 
(b) 

 
(c) 

Distance 

(km) 

Scenario 1 

GWO DA SSA NN LSTM ChOA 

5 0.9133 0.8925 0.9341 0.7874 0.7986 0.95083 

10 0.88 0.8862 0.9633 0.8173 0.8035 0.9675 

15 0.8883 0.8925 0.98 0.8282 0.8071 0.99083 

20 0.8925 0.9425 0.985 0.8404 0.8182 0.99325 

Distance 

(km) 

Scenario 2  

GWO DA SSA NN LSTM ChOA 

5 0.9491 0.9383 0.9462 0.7985 0.8171 0.95917 

10 0.9516 0.9531 0.9633 0.8306 0.8071 0.96167 

15 0.9518 0.955 0.9654 0.8415 0.83 0.9618 

20 0.95542 0.9841 0.9687 0.8462 0.8415 0.96542 

Distance 

(km) 

Scenario 3  

GWO DA SSA NN LSTM ChOA 

5 0.94042 0.855 0.9654 0.8073 0.8275 0.94042 

10 0.95167 0.83 0.9383 0.8348 0.8175 0.95167 

15 0.9525 0.855 0.957 0.8475 0.8375 0.9525 

20 0.96 0.8904 0.9945 0.8613 0.8502 0.96 

TABLE 1. Model Parameters 

TABLE 2. Comparative analysis based on Accuracy in terms of fault Distance 

FIG 3. Analysis on accuracy of fault distance, (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3 
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Fault Type Scenario 1  

GWO DA SSA NN LSTM ChOA 

A-G 0.905 0.9052 0.947 0.8075 0.8195 0.9445 

B-G 0.93625 0.9395 0.9616 0.8182 0.8208 0.98 

C-G 0.94667 0.9406 0.962 0.8182 0.8286 0.9818 

A-B 0.97792 0.9537 0.9633 0.8339 0.8406 0.9938 

B-C 0.99125 0.9552 0.9716 0.8415 0.8448 0.9925 

C-A 0.99165 0.9632 0.9728 0.8448 0.8471 0.9945 

Fault Type Scenario 2  

GWO DA SSA NN LSTM ChOA 

A-G 0.93625 0.8466 0.905 0.8175 0.8285 0.982 

B-G 0.96542 0.8758 0.9591 0.8306 0.8286 0.9841 

C-G 0.97583 0.8729 0.9766 0.8392 0.8306 0.955 

A-B 0.98104 0.8818 0.9841 0.8435 0.8475 0.9779 

B-C 0.98458 0.8466 0.9883 0.8502 0.8506 0.9904 

C-A 0.98833 0.8654 0.9892 0.8538 0.8612 0.9918 

Fault Type Scenario 3  

GWO DA SSA NN LSTM ChOA 

A-G 0.96125 0.8695 0.875 0.8303 0.8395 0.9847 

B-G 0.97167 0.8362 0.8962 0.8385 0.8404 0.9887 

C-G 0.98354 0.8945 0.8862 0.8475 0.8404 0.9856 

A-B 0.97958 0.8591 0.9025 0.8515 0.8573 0.9814 

B-C 0.98503 0.8466 0.8508 0.8612 0.8572 0.9904 

C-A 0.98708 0.8589 0.9066 0.8591 0.8675 0.9912 
 

Table 3 provides a comparative analysis of accuracy across different fault types for various algorithms GWO, 

DA, SSA, NN, LSTM, and ChOA across three scenarios. In Scenario 1, ChOA demonstrates the highest accuracy 

in most fault types, particularly excelling in the B-G, C-G, and C-A faults with accuracies as high as 0.9818, 
0.9938, and 0.9945, respectively. SSA also shows strong performance, especially in the B-G and C-G fault types, 

with accuracies of 0.9616 and 0.962. On the other hand, NN and LSTM consistently show lower accuracy, 

particularly in single-phase-to-ground faults like A-G, where their accuracies hover around 0.8075 and 0.8195, 

respectively. 

In Scenario 2, ChOA continues to outperform other algorithms, maintaining high accuracy levels, especially in 

A-G, B-G, and C-G fault types, where it achieves accuracies of 0.982, 0.9841, and 0.9918, respectively. GWO 

also performs well, particularly in B-G and C-G faults, with accuracies of 0.96542 and 0.98833. In Scenario 3, 

ChOA again leads in most fault types, particularly in the B-G, C-G, and C-A faults, where it records accuracies 

of 0.9887, 0.9856, and 0.9912, respectively. SSA's performance is more variable in this scenario, with accuracies 

ranging from 0.8508 in the B-C fault to 0.9025 in the A-B fault. Meanwhile, NN and LSTM continue to show 

relatively lower accuracy, particularly in faults involving phase-to-phase interactions. 

2. Analysis of Transmission Line 

Table 4 compares the actual fault distances with the predicted fault distances across three scenarios using six 

different algorithms: GWO, DA, SSA, NN, LSTM, and ChOA. In Scenario 1, the predicted distances show 

varying degrees of accuracy. ChOA and SSA are generally more consistent in predicting fault distances closer to 

the actual values, particularly for shorter distances like 1 km and 2 km, where they often predict correctly or within 

a small margin. On the other hand, NN and LSTM demonstrate less accuracy, with predictions deviating more 

frequently from the actual distances. For example, at an actual distance of 3 km, NN predicts 2 km in multiple 

cases, indicating a tendency towards underestimation. 

In Scenario 2, the accuracy of the predictions improves for most algorithms, especially for GWO, ChOA, and 
SSA. ChOA continues to exhibit strong performance, often predicting the fault distance accurately or very close 

to the actual value. For instance, at an actual distance of 1 km, ChOA correctly predicts 1 km, while other 

algorithms like NN and LSTM show more variation, sometimes predicting distances that are off by 1 or 2 km. 

GWO and DA also show reasonable accuracy, with GWO performing particularly well at distances like 4 km, 

where it accurately predicts 4 km. Scenario 3 presents more challenging conditions, with the algorithms showing 

varied performance in predicting fault distances. ChOA and SSA still lead in terms of accuracy, although some 

predictions show more significant deviations, such as SSA predicting 5 km for an actual distance of 1 km. This 

scenario also highlights the limitations of NN and LSTM, which consistently predict distances that are further 

TABLE 3. Comparative analysis based on Accuracy with respect to Fault type 
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from the actual values. For instance, NN predicts 4 km when the actual distance is 3 km, and LSTM also shows 

similar discrepancies. GWO and DA exhibit moderate accuracy, with GWO sometimes predicting distances 

farther from the actual, such as 6 km for an actual distance of 3 km. 
 

 
 

Actual 

Distance 

Predicted Distance 

Scenario 1 

GWO DA SSA NN LSTM ChOA 

1       3 3 1 2 3 1 

3 2 2 2 2 1 3 

2 2 1 3 1 3 2 

3       1 3 4 2 3 3 

4       3 1 3 4 3 4 

4 4 1 2 4 1 4 

Actual 

Distance 

Scenario 2  

GWO DA SSA NN LSTM ChOA 

1 3 1 3 2 1 1 

3 2 2 3 2 2 3 

2 1 3 4 1 2 3 

3 2 3 2 3 1 3 

4 4 1 3 3 2 4 

4 3 2 2 3 3 2 

Actual 

Distance 

Scenario 3  

GWO DA SSA NN LSTM ChOA 

1 2 1 5 1 2 1 

3 3 2 3 1 2 3 

2 1 3 1 2 2 2 

3 6 1 3 4 5 3 

4 5 4 3 5 3 4 

4 5 6 3 4 5 5 
 

Table 5 evaluates the algorithms’ accuracy in predicting fault types across three scenarios. In Scenario 1, ChOA 

generally demonstrates the highest accuracy, correctly predicting the fault type in several cases, such as when the 

actual fault type is 4 or 2. SSA also performs well, particularly in predicting fault types 3 and 2 accurately. 
However, NN and LSTM tend to show lower accuracy, frequently misclassifying fault types. For example, when 

the actual fault type is 4, NN predicts type 1, which indicates a significant deviation.  
 

 

Actual fault 

type 

Predicted fault 

Scenario 1 

GWO DA SSA NN LSTM ChOA 

4 2 3 3 1 2 4 

5 1 3 3 3 4 5 

2 2 2 1 1 2 2 

4 3 3 2 3 2 4 

2 1 1 2 2 1 2 

3 3 2 1 2 2 3 

Actual fault 

type 

Scenario 2 

GWO DA SSA NN LSTM ChOA 

4 1 5 3 4 3 4 

5 2 1 6 4 3 5 

2 3 3 6 2 1 2 

4 6 2 1 5 3 4 

2 2 1 1 1 2 2 

3 5 4 2 4 4 2 

Actual fault 

type 

Scenario 3 

GWO DA SSA NN LSTM ChOA 

4 5 4 6 4 3 4 

5 6 3 6 6 4 5 

2 4 2 3 3 1 2 

4 3 1 4 2 3 4 

2 1 1 6 3 2 2 

3 2 2 1 1 4 1 

TABLE 4. Actual fault distance Vs predicted fault distance 

TABLE 5. Actual fault type Vs predicted fault type 
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In Scenario 2, the predictions vary more, with some algorithms showing improvements and others declining in 

accuracy. ChOA remains one of the most accurate, especially for fault types 2 and 4, where it consistently predicts 

correctly. SSA and DA exhibit less consistency, with SSA occasionally predicting fault types that differ from the 

actual ones by a larger margin, such as predicting type 6 instead of type 3. GWO also shows variability, with some 

correct predictions but also significant errors, such as predicting type 6 when the actual fault type is 4. 

Scenario 3 continues to reflect the pattern of variability among the algorithms. ChOA maintains relatively high 

accuracy, particularly for fault types 4 and 5, where it predicts correctly or closely matches the actual type. GWO 

and SSA show mixed results, with SSA particularly struggling to predict fault types accurately, often indicating a 

different fault type than the actual one. NN and LSTM remain less accurate, with frequent misclassifications, such 

as NN predicting type 6 when the actual type is 2, further highlighting their limitations in this context. 

3. Analysis in Terms of Error Value 

The analysis of the ChoA-based SVM method is deliberated through significant MAE measures in this division. 

Figures 10 and 11 portray the comparative evaluation for all three scenarios in terms of MAE. Table 6 tabulates 

the measure of MAE for the conventional methods and the proposed method in terms of fault distance. 

Table 6 provides a comparative analysis of the Mean Absolute Error (MAE) for fault distance predictions across 

different training percentages and scenarios using six algorithms: GWO, DA, SSA, NN, LSTM, and ChOA. In 

Scenario 1, as the training percentage increases, the MAE generally decreases for most algorithms, with ChOA 

consistently achieving the lowest MAE values across all training percentages. For instance, at 80% training, ChOA 

has an MAE of just 0.0175, significantly lower than the other algorithms. SSA also performs well, especially at 

60% training, where it has a MAE of 0.066. NN and LSTM, however, exhibit higher MAE values, particularly at 
lower training percentages. 

In Scenario 2, the trend is similar, with ChOA consistently delivering the lowest MAE values. At 80% training, 

ChOA achieves an MAE of 0.0187, outperforming the other algorithms. SSA and DA also show good 

performance, with DA having a relatively low MAE of 0.0765 at 70% training. However, NN and LSTM continue 

to show higher MAE values, indicating less accuracy in fault distance predictions, particularly as the training 

percentage decreases. 

Scenario 3 further reinforces these trends, with ChOA maintaining the lowest MAE values across all training 

percentages. At 80% training, ChOA’s MAE is 0.0175, again leading in accuracy. SSA and DA also perform well, 

particularly at 60% training where SSA achieves an MAE of 0.0268. GWO shows moderate performance, with a 

noticeable improvement in accuracy as the training percentage increases. On the other hand, NN and LSTM 

consistently exhibit higher MAE values, particularly at lower training percentages, highlighting their limitations 
in fault distance prediction accuracy. 

 

 
(a) 

 
(b) 

 
(c) 

 

Table 6 presents a comparative analysis of the Mean Absolute Error (MAE) for fault type predictions across 

different training percentages and scenarios using six algorithms: GWO, DA, SSA, NN, LSTM, and ChOA. In 

Scenario 1, ChOA consistently demonstrates the lowest MAE values, indicating its superior accuracy in predicting 

fault types. For example, at 60% training, ChOA achieves an impressive MAE of just 0.0161, significantly 

outperforming the other algorithms. GWO and DA also show reasonable performance, particularly at higher 

training percentages, but NN and LSTM tend to have higher MAE values, reflecting less accurate fault type 

predictions, especially at lower training percentages. 

 
 

FIG 4. Analysis of fault distance using MAE, (a) Scenario 1, (b) Scenario 2, and (c) Scenario  
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Training 

percentage 

MAE 

Scenario 1 

GWO DA SSA NN LSTM ChOA 

50 0.1708 0.13628 0.19897 0.1337 0.2175 0.0394 

60 0.14667 0.13625 0.066 0.1395 0.2224 0.0227 

70 0.1619 0.0578 0.0747 0.1127 0.1897 0.0446 

80 0.0394 0.0508 0.0456 0.1623 0.1728 0.0175 

Training 

percentage 

Scenario 2  

GWO DA SSA NN LSTM ChOA 

50 0.12717 0.10618 0.1618 0.215 0.2034 0.0208 

60 0.13937 0.1237 0.0637 0.2424 0.2417 0.0319 

70 0.0793 0.0765 0.0587 0.2264 0.2417 0.0165 

80 0.03937 0.0925 0.0506 0.2047 0.1917 0.0187 

Training 

percentage 

Scenario 3  

GWO DA SSA NN LSTM ChOA 

50 0.0782 0.0876 0.0457 0.206 0.1917 0.0226 

60 0.0446 0.0529 0.0268 0.2197 0.2304 0.0248 

70 0.0481 0.0328 0.0723 0.2016 0.2193 0.0158 

80 0.0424 0.0925 0.0691 0.1897 0.17247 0.0175 
 

In Scenarios 2 and 3, ChOA continues to lead in accuracy with the lowest MAE values across all training 

percentages. For instance, in Scenario 3 at 80% training, ChOA maintains a low MAE of 0.0165. SSA and DA 

also perform well, particularly in Scenario 2, where DA has an MAE of 0.0765 at 70% training. However, NN 

and LSTM again show higher MAE values, particularly in Scenario 1, where their MAE values are consistently 

higher than those of ChOA, SSA, and DA. Overall, ChOA's performance stands out as the most accurate across 

all scenarios and training percentages for fault type prediction. 
 

 
 

Training 

percentage 

MAE 

Scenario 1 

GWO DA SSA NN LSTM ChOA 

50 0.1354 0.1521 0.1729 0.2178 0.2067 0.0975 

60 0.1927 0.1076 0.0656 0.2477 0.2576 0.0161 

70 0.0408 0.0431 0.0847 0.2376 0.2437 0.0106 

80 0.0781 0.0396 0.0687 0.2071 0.1973 0.0247 

Training 

percentage 

Scenario 2 

GWO DA SSA NN LSTM ChOA 

50 0.1271 0.10618 0.1618 0.215 0.2034 0.0208 

60 0.1393 0.1237 0.0637 0.2424 0.2417 0.0319 

70 0.0793 0.0765 0.0587 0.2264 0.2417 0.0165 

80 0.0393 0.0925 0.0506 0.2047 0.1917 0.0187 

Training 

percentage 

Scenario 3 

GWO DA SSA NN LSTM ChOA 

50 0.1467 0.1654 0.2238 0.206 0.1917 0.0165 

60 0.0721 0.0896 0.0779 0.2197 0.23047 0.0154 

70 0.0771 0.0824 0.05152 0.2016 0.2193 0.0155 

80 0.13 0.0445 0.0925 0.1897 0.1724 0.0165 
 

Table 7 presents a comparative analysis of the Mean Absolute Error (MAE) for fault type predictions across 

different training percentages and scenarios using six algorithms: GWO, DA, SSA, NN, LSTM, and ChOA. In 

Scenario 1, ChOA consistently demonstrates the lowest MAE values, indicating its superior accuracy in predicting 

fault types. For example, at 60% training, ChOA achieves an impressive MAE of just 0.0161, significantly 
outperforming the other algorithms. GWO and DA also show reasonable performance, particularly at higher 

training percentages, but NN and LSTM tend to have higher MAE values, reflecting less accurate fault type 

predictions, especially at lower training percentages. 

TABLE 6. Comparative analysis based on MAE for fault distance 

TABLE 7. Comparative analysis based on MAE for fault type 
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In Scenarios 2 and 3, ChOA continues to lead in accuracy with the lowest MAE values across all training 

percentages. For instance, in Scenario 3 at 80% training, ChOA maintains a low MAE of 0.0165. SSA and DA 

also perform well, particularly in Scenario 2, where DA has an MAE of 0.0765 at 70% training. However, NN 

and LSTM again show higher MAE values, particularly in Scenario 1, where their MAE values are consistently 

higher than those of ChOA, SSA, and DA. Overall, ChOA's performance stands out as the most accurate across 

all scenarios and training percentages for fault type prediction. 

 

 
(a) 

 
(b) 

 
(c) 

 

The measure of MAE for the suggested approach and the standard methods are tabulated in Table 9 according 
to the fault type. In comparison to the established techniques for fault identification and classification in 

transmission lines, it is apparent from the table that the suggested technique has a lower level of MAE in detecting 

the fault distance and fault type. 

4. Computational Time 

Table 8 provides an analysis of the computational time required by six different algorithms—GWO, DA, SSA, 

NN, LSTM, and ChOA—across three cases. ChOA consistently exhibits the shortest computational time in all 

cases, demonstrating its efficiency. For instance, in Case 1, ChOA takes only 0.06665 units of time, which is 

significantly less than the time taken by the other algorithms. GWO also performs well in terms of speed, 
particularly in Case 1, where it requires 0.081552 units of time. On the other hand, algorithms like DA and SSA 

have longer computational times, with SSA taking up to 0.95688 units of time in Case 3, the highest among all. 

NN and LSTM show moderate performance but still require more time compared to GWO and ChOA, particularly 

in Case 1, where NN takes 0.8711 units of time. Overall, ChOA emerges as the most computationally efficient 

algorithm, followed closely by GWO, while SSA and DA are relatively slower. 
 

 
 

Cases GWO DA SSA NN LSTM ChOA 

Case 1 0.081552 0.59816 0.3078 0.8711 0.4262 0.06665 

Case 2 0.22708 0.69312 0.82993 0.7281 0.5172 0.14167 

Case 3 0.26538 0.72221 0.95688 0.3502 0.6672 0.13167 

5. K-Fold Validation 

Table 9 depicts the K-Fold analysis for diverse values of k (k=1, k=2, k=3, k=4, k=5). The positive measures 

like accuracy, specificity, precision, F-measure, MCC, and NPV achieve the greater value at k=3. Similarly, the 

negative measures FPR and FNR achieve the least value at k=3. Accordingly the entire analysis in Table 9, k=3 

provides a superior result. 
 

 

 

k-fold Accuracy Sensitivity Specificity Precision FPR F1_score MCC FNR NPV FDR 
K=1 0.929 0.931 0.956 0.946 0.054 0.933 0.889 0.079 0.956 0.064 

K=2 0.904 0.887 0.943 0.915 0.067 0.891 0.836 0.123 0.943 0.095 

K=3 0.917 0.942 0.97 0.967 0.04 0.952 0.923 0.068 0.97 0.043 

K=4 0.913 0.922 0.949 0.939 0.061 0.929 0.876 0.088 0.949 0.071 

K=5 0.892 0.873 0.932 0.906 0.078 0.883 0.816 0.137 0.932 0.104 

TABLE 8. Analysis on computational time 

FIG 5 . Analysis of fault type using MAE, (a) Scenario 1, (b) Scenario 2, and (c) Scenario  

TABLE 9. K-fold Analysis 
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6. Fault Signal Analysis 

 A line-to-line fault occurs when two conductors are short-circuited. Four examples of fault data for single 
line-to-line faults are depicted in Fig.6. Fault scenarios in real transmission lines are dynamic and complex. Faulty 

or non-faulty signals with varying fault locations, fault resistance, fault angles, and fault times are created to 

simulate various fault scenarios. 

 

 

 

(a) (b) 

  

(c) (d) 

5. CONCLUSIONS 

In conclusion, the research paper demonstrates the effectiveness of the ChOA combined with a SVM for fault 

classification and detection in transmission lines. Through extensive comparative analysis, it is evident that ChOA, 

when integrated with SVM, outperforms other algorithms like GWO, DA, SSA, NN, and LSTM in terms of 
accuracy, MAE, and computational efficiency. ChOA consistently shows superior performance in accurately 

predicting fault types and distances across various scenarios, with the lowest MAE values and the fastest 

computational times, making it a highly efficient and reliable approach for fault detection in transmission lines. 

The findings underscore the potential of ChOA as a powerful optimization tool in conjunction with SVM for 

enhancing the accuracy and speed of fault detection techniques  in power transmission networks. This combination 

not only lowers the computational burden but also advances the precision of fault classification, ensuring a more 

robust and responsive fault management system. The study paves the way for further exploration of ChOA in 

other power system applications, highlighting its adaptability and effectiveness in handling complex optimization 

problems in real-time scenarios 

REFERENSI 

[1] Upadhyay, S., Kapoor, S. R., & Choudhary, R. (2018, July). Fault classification and detection in 
transmission lines using ANN. In 2018 International Conference on Inventive Research in Computing 

Applications (ICIRCA) (pp. 1029-1034). IEEE. DOI: 10.1109/ICIRCA.2018.8597294 

[2] Chen, K., Huang, C., & He, J. (2016). Fault detection, classification and location for transmission lines and 

distribution systems: a review on the methods. High voltage, 1(1), 25-33. DOI:10.1049/HVE.2016.0005 

FIG 6 . Analysis of fault data for the single line-to-line fault (a) Fault Data 1 (a) Fault Data 2 (a) Fault Data 3 (a) Fault Data 4 

https://doi.org/10.1109/ICIRCA.2018.8597294
https://doi.org/10.1049/HVE.2016.0005


V.Rajesh Kumar, P.Aruna Jeyanthy, Mahesh K  

100  Fault Classification and Detection in Transmission Lines by Chimp Optimization Algorithm (ChOA) Associated 
Support Vector Machine 

 

 JITSI : Jurnal Ilmiah Teknologi Sistem Informasi, Volume 6 No 1, March 2025, Hal 86 - 101 
 

[3] Mishra, D. P., & Ray, P. (2018). Fault detection, location and classification of a transmission line. Neural 

Computing and Applications, 30, 1377-1424. DOI:10.1007/s00521-017-3295-y 

[4] Singh, M. R., Chopra, T., Singh, R., & Chopra, T. (2015). Fault classification in electric power transmission 

lines using support vector machine. Int. J. Innov. Res. Sci. Technol, 1(12), 388-400. Corpus ID: 18709549 

[5] Guo, M. F., Yang, N. C., & Chen, W. F. (2019). Deep-learning-based fault classification using Hilbert–

Huang transform and convolutional neural network in power distribution systems. IEEE Sensors 

Journal, 19(16), 6905-6913. DOI: 10.1109/JSEN.2019.2913006 

[6] Dhibi, K., Fezai, R., Mansouri, M., Trabelsi, M., Kouadri, A., Bouzara, K., ... & Nounou, M. (2020). 
Reduced kernel random forest technique for fault detection and classification in grid-tied PV 

systems. IEEE Journal of Photovoltaics, 10(6), 1864-1871. DOI: 10.1109/JPHOTOV.2020.3011068 

[7] Al Kharusi, K., El Haffar, A., & Mesbah, M. (2022). Fault detection and classification in transmission lines 

connected to inverter-based generators using machine learning. Energies, 15(15), 

5475.  https://doi.org/10.3390/en15155475 

[8] Pranav, M. S., Karthik, C., Kavitha, D., Vishal, K., Tarun, J., & Vanitha, V. (2018, May). Fault Detection 

and Classification in Three Phase Transmission Lines using Signal Processing. In 2018 3rd IEEE 
International Conference on Recent Trends in Electronics, Information & Communication Technology 

(RTEICT) (pp. 347-350). IEEE. DOI:10.1109/RTEICT42901.2018.9012246 

[9] Omar, A. M. S., Osman, M. K., Ibrahim, M. N., Hussain, Z., & Abidin, A. F. (2020). Fault classification 

on transmission line using LSTM network. Indonesian Journal of Electrical Engineering and Computer 
Science, 20(1), 231-238.  

DOI: http://doi.org/10.11591/ijeecs.v20.i1.pp231-238 

[10] Elnozahy, A., Sayed, K., & Bahyeldin, M. (2019, October). Artificial neural network based fault 

classification and location for transmission lines. In 2019 IEEE Conference on Power Electronics and 

Renewable Energy (CPERE) (pp. 140-144). IEEE. DOI:10.1109/CPERE45374.2019.8980173 

[11] Zhang, L., Zhao, Z., Zhang, D., Luo, C., & Li, C. (2022). Particle swarm optimization pattern recognition 

neural network for transmission lines faults classification. Intelligent Data Analysis, 26(1), 189-203. 

DOI:10.3233/IDA-205695 

[12] de Souza Gomes, A., Costa, M. A., de Faria, T. G. A., & Caminhas, W. M. (2013). Detection and 

classification of faults in power transmission lines using functional analysis and computational 

intelligence. IEEE Transactions on Power Delivery, 28(3), 1402-1413. 

DOI:10.1109/TPWRD.2013.2251752 

[13] Najafzadeh, M., Pouladi, J., Daghigh, A., Beiza, J., & Abedinzade, T. (2024). Fault Detection, 

Classification and Localization Along the Power Grid Line Using Optimized Machine Learning 

Algorithms. International Journal of Computational Intelligence Systems, 17(1), 49. 

DOIhttps://doi.org/10.1007/s44196-024-00434-7 

[14] Dash, P. K., Samantaray, S. R., & Panda, G. (2006). Fault classification and section identification of an 

advanced series-compensated transmission line using support vector machine. IEEE transactions on power 

delivery, 22(1), 67-73. DOI:10.1109/TPWRD.2006.876695 

[15] Gomathy, V., & Selvaperumal, S. (2016). Fault detection and classification with optimization techniques 

for a three-phase single-inverter circuit. Journal of Power Electronics, 16(3), 1097-1109. 

DOI:10.6113/JPE.2016.16.3.1097 

[16] Ahanch, M., Asasi, M. S., & McCann, R. (2021, April). Transmission lines fault detection, classification 

and location considering wavelet support vector machine with Harris Hawks optimization algorithm to 

improve the SVR training. In 2021 8th International Conference on Electrical and Electronics Engineering 

(ICEEE) (pp. 155-160). IEEE. DOI:10.1109/ICEEE52452.2021.9415887 

[17] Jawad, R. S., & Abid, H. (2022). Fault detection in HVDC system with gray wolf optimization algorithm 

based on artificial neural network. Energies, 15(20), 7775. https://doi.org/10.3390/en15207775 

https://link.springer.com/article/10.1007/s00521-017-3295-y
https://doi.org/10.1109/JSEN.2019.2913006
https://doi.org/10.1109/JPHOTOV.2020.3011068
https://doi.org/10.3390/en15155475
http://dx.doi.org/10.1109/RTEICT42901.2018.9012246
http://doi.org/10.11591/ijeecs.v20.i1.pp231-238
http://dx.doi.org/10.1109/CPERE45374.2019.8980173
http://dx.doi.org/10.3233/IDA-205695
http://dx.doi.org/10.1109/TPWRD.2013.2251752
http://dx.doi.org/10.1109/TPWRD.2006.876695
http://dx.doi.org/10.6113/JPE.2016.16.3.1097
http://dx.doi.org/10.1109/ICEEE52452.2021.9415887
https://doi.org/10.3390/en15207775


V.Rajesh Kumar, P.Aruna Jeyanthy, Mahesh K  

101  Fault Classification and Detection in Transmission Lines by Chimp Optimization Algorithm (ChOA) Associated 
Support Vector Machine 

 

 JITSI : Jurnal Ilmiah Teknologi Sistem Informasi, Volume 6 No 1, March 2025, Hal 86 - 101 
 

[18] Jawad, R. S., & Abid, H. (2023). Fault detection and classification for voltage source converter-high 

voltage systems by using different swarm optimization algorithms-based neural network. Engineered 

Science, 23(2), 884.DOI:10.30919/es884 

[19] Ghashghaei, S., & Akhbari, M. (2021). Fault detection and classification of an HVDC transmission line 

using a heterogenous multi‐machine learning algorithm. IET Generation, Transmission & 

Distribution, 15(16), 2319-2332.https://doi.org/10.1049/gtd2.12180 

[20] Kanwal, S., & Jiriwibhakorn, S. (2023). Artificial intelligence based faults identification, classification, 

and localization techniques in transmission lines-a review. IEEE Latin America Transactions, 21(12), 

1291-1305. DOI:10.1109/TLA.2023.10305233 

[21] Ray, P., & Mishra, D. P. (2016). Support vector machine based fault classification and location of a long 

transmission line. Engineering science and technology, an international journal, 19(3), 1368-1380. 

https://doi.org/10.1016/j.jestch.2016.04.001 

[22] Kumar, A. N., Kumar, M. S., Ramesha, M., Gururaj, B., & Srikanth, A. (2021). Support vector machine 

based fault section identification and fault classification scheme in six phase transmission line. IAES 

International Journal of Artificial Intelligence, 10(4), 1019. DOI: 

http://doi.org/10.11591/ijai.v10.i4.pp1019-1024 

[23] Fei, C., & Qin, J. (2021). Fault location after fault classification in transmission line using voltage 

amplitudes and support vector machine. Russian Electrical Engineering, 92(2), 112-121. 

DOI:10.1016/j.epsr.2018.02.005 

[24] Shakiba, F. M., Azizi, S. M., Zhou, M., & Abusorrah, A. (2023). Application of machine learning methods 

in fault detection and classification of power transmission lines: a survey. Artificial Intelligence 

Review, 56(7), 5799-5836.  https://doi.org/10.1007/s10462-022-10296-0 

[25] Khishe, M., & Mosavi, M. R. (2020). Chimp optimization algorithm. Expert systems with 

applications, 149, 113338. DOI:10.1016/j.eswa.2020.113338 

http://dx.doi.org/10.30919/es884
https://doi.org/10.1049/gtd2.12180
http://dx.doi.org/10.1109/TLA.2023.10305233
https://doi.org/10.1016/j.jestch.2016.04.001
http://dx.doi.org/10.1016/j.epsr.2018.02.005
http://dx.doi.org/10.1016/j.eswa.2020.113338

